

Integrated Predictive Models and Sensors in Food Supply Chains to Enhance Food Safety

Mark Tamplin

Food Safety Centre Tasmania Institute of Agriculture University of Tasmania

TIA is a joint venture of the University of Tasmania and the Tasmanian Government

Food Safety and Standards Authority of Ind/a

Outline

- Predictive Microbiology an overview
- Case studies- industry/government/academic partnerships
- Sensors and databases (ComBase)

Global Food Drivers

Environment

- Contaminants
- Climate Change
- Resource conservation

Safety

- Complex global supply chains
- Traceability
- Physical contaminants
- Microbial contamination
- Chemical contaminants
- Economic adulterants
- Allergens
- GMOs
- Emerging hazards
- Biosecurity
- Nano safety

Globalization

- Global sourcing
- Global sourcing of R&D

Regulatory

- Increased scrutiny
- National vs International Standards
- New risk management approaches

Demographics

- 2050, 9 billion population
- Urbanisation
- Aging population
- Increased ability to pay for value-added products

Retailers

- Larger than the biggest food processors
- Buying power
- Reduced margins affect systems downstream

Consumer

- Food safety
- Converging trends
 - health
 - convenience
 - premium
 - ethics
- Animal welfare

Science & Technology

- Transformational in biology & nutrition
- Novel processing technologies
- Functional ingredients
- Nanotechnology

Nutrition/Health

- Chronic illness
- Immunodeficiency
- Consumer behaviour difficult to change

Microbiological Safety of foods:

Key areas of scientific capacity building

Climate Change

Emerging Hazards

Food import-export (\$-value) fluxes "The highway"

József Baranyi (personal Communication)

Betweenness centrality

Global sources of food (and contamination)

Food Safety Modernization Act

Food Safety Objectives $H_{o} + \Sigma I + \Sigma R \leq FSO$

L.G.M. Gorris / Food Control 16 (2005) 801-809

Those at risk for serious foodborne illness:

persons with chronic disease
very young and elderly
immuno-compromised

A basic tenet of food safety

Successful risk management systems rely on knowing how hazards respond to environmental conditions.

.....such information reduces uncertainty

A basic tenet of food safety

A successful risk management system relies on knowing how hazards respond to environmental conditions.

.....such information reduces uncertainty

But are we using all of the available tools to manage risk?

Predictive Microbiology

Predictive models

Represent condensed knowledge, which

- describe microbial behavior in different environments
- help us better understand and manage the ecology of foodborne microorganisms

$$\frac{dx}{dt} = \frac{q(t)}{q(t)+1} \cdot \mu_{\max} \cdot \left(1 - \left(\frac{x(t)}{x_{\max}}\right)^m\right) x(t)$$

Predictive microbiology

Assumes microbial behavior is:

• reproducible

• quantifiable by characterizing environmental factors

Benefits of predictive models

- Identify factors that control microbial viability (e.g. temp, a_w, pH, organic acids)
- Assist in defining preventive controls (e.g. critical limits)
- Help regulatory authorities develop standards, and help companies meet standards
- Minimize microbiological testing
- Inform exposure assessment

Predictive models advance food safety risk management systems

prescriptive outcome-based

How can we be sure that we are producing the most effective models?

Technical Aspects of Applied Research

Social Aspects

Other associated benefits

- Predictive microbiology brings together persons with diverse but complimentary skills, including microbiologists, mathematicians, engineers, and other disciplines.
- Excellent approach for capacity-building

PRIMARY MODEL PRODUCTION

Experimental design

Extrinsic factors

- ➤ temperature
- > atmosphere (e.g. packaging gas, humidity)

Intrinsic factors

- ➢ food matrix
- ≻ pH
- ➤ water activity
- ➤ additives (e.g. NaCl, acidulants)

Growth

Kinetic parameters

• Lag phase

lag phase duration

Growth

growth rate

Stationary phase

maximum population density

Growth Models

Inactivation Models

Inactivation kinetics

$$N = N_0 e^{-kt}$$

• D-value $\frac{t}{\log N_0 - \log N_1}$

- Z-value $\frac{(T_2 T_1)}{\log(D_1/D_2)}$
- Process lethality $F = \int_0^t 10^{(T(t) T(ref))/z} dt$

Transfer Models

y=a*e^(-x/b)

Modeling the complexity of microbial interactions

SECONDARY MODELS

Change in parameter(s) as a function of environmental change

Probabilistic models

Growth/No-growth boundaries (e.g. product development)

Growth/No-Growth

Adapted from Ross

Growth/No-Growth

Adapted from Ross

Growth/No-Growth

Adapted from Ross
Measuring Model Performance (validation)

Bias factor

$$B_{f}=10^{(\sum log(GT_{predicted}/GT_{observed})/n)}$$

Accuracy factor

$$A_{f} = 10^{\left(\sum |\log(GT_{predicted}/GT_{observed})|/n\right)}$$

TERTIARY MODELS

GR (log cfu/h)=-0.0146+0.0098T -0.0206L 0.2220D - 0.0013TL-0.0392TD+0.0143LD $+0.0001T^2+0.0053L^2+2.9529D^2$

Examples of common model interfaces

GroPIN Modelling DataBase

Laboratory of Food Quality Control & Hygiene Department of Food Science and Technology Agricultural University of Athens

Food Spoilage and Safety Predictor (FSSP)

Case Studies

Case study #1: Vibrio parahaemolyticus and oyster supply chains

Problem: How can companies reduce uncertainties in supply chains?

V. parahaemolyticus 2->3% salt

5 1-2% salt

V. vulnificus

V. cholerae <1% salt

Residuals of predicted versus observed log10 *V. parahaemolyticus* (Vp) densities in oysters versus salinity based on linear regression of log10 *V. parahaemolyticus* (Vp) densities against water temperature.

Regression fit of $\log_{10} V$ parahaemolyticus (Vp) densities in oysters versus water temperature (DePaola *et al.*, 1990). Mean $\log_{10} Vp/g$ or median Vp/g (solid line) and 95% confidence limits (dashed lines).

Relationship Between Seawater Surface Temperature and *V. parahaemolyticus* Densities in Oysters

Figure 6: *V. vulnificus* baseline levels

Figure 7: V. vulnificus levels at time of consumption Figure 8: Log mean risk at consumption

FAO/WHO Working Group 5 Risk Management Exercise 2006

Risk Management

Effect of potential mitigations on the distribution mean risk of *V. parahaemolyticus* illnesses per serving associated with Gulf Coast harvest. No mitigation (•);rapid cooling (\diamond);treatment resulting in 2-log reduction (Δ); treatment resulting in \geq 4.5-log reduction (O).

V. parahaemolyticus harvest control plan

Atlantic (subtidal harvest)							
month	water temperature (F)	air temperature (F)	maximum time unrefrigerated (hr)	expected cases per 100,000 (servings)	lower confidence limit on expected cases per 100,000	VPCP needed?	maximum time (hr) for lower confidence of 1 per 100,000
Jan	38.3	33.3	36	0.0038	0.0003	N	
Mar	36.7 42.6	35.6 41.0	36 36	0.0018	0.00014	N N	
Apr May	52.3 64.0	50.9 59.9	36 36	0.012	0.00095	N N	
Jun July	73.8 79.9	69.3 74.3	24 24	13 160	1 13	N Y	12.3
Aug Sep	81.1 75.2	73.0 67.1	24 24	120 7.7	9.5 0.61	Y N	12.9
Oct Nov	64.6 53.1	56.3 45.9	36 36	0.2 0.0074	0.016 0.00059	N N	
Dec	43.0	36.0	36	0.0037	0.00029	N	

Climate Change

Vibrio species

- Vibrio diseases are increasing
- Outbreaks of V. parahaemolyticus
 - Example: 2004-2007- outbreak in Puerto Montt, Chile
 - >7,000 cases
 - O3:K6 serotype
 - El Nino Southern Oscillation (ENSO)

A Predictive Model to Manage the Risk of *Vibrio parahaemolyticus* in Australian Pacific Oysters (*Crassostrea gigas*)

Dr. Judith Fernandez-Piquer

Fernandez-Piquer et al., Appl. Environ. Microbiol. 2011

Model development

- V. parahaemolyticus growth kinetics measured from 4 30°C
- Growth (>15°C) and death rates (<15°C) determined
- Models tested (validated) against naturally-occurring Vp

Model validation

- V. parahaemolyticus growth was measured from 4 30°C
- Growth (>15°C) and death rates (<15°C) determined
- Models tested (validated) against naturally-occurring Vp

Models for *V. parahaemolyticus* growth and inactivation, and Total Viable Count

Vp growth	√growth rate = 0.0303 x (temperature - 13.37) R ² = 0.92
Vp inactivation	In inactivation rate = In 1.81 \times 10 ⁻⁹ + 4131.2 \times (1/(T+273.15)) R ² = 0.78
TVC growth	√growth rate = 0.0102 x (temperature + 6.71) R²= 0.92

Fernandez-Piquer et al., Appl. Environ. Microbiol. 2011

Oyster Refrigeration Index

Home | Growth Predictor | Contact Us | Downloads | Manage Account | Login

Oyster Refrigeration Index

The <u>Australian Seafood CRC</u> Oyster Refrigeration Index is a predictive model that estimates the growth and survival of *V. parahaemolyticus* and total viable count (TVC) bacteria in Pacific oysters (*Crassostrea gigas*).

Temperature is a key factor for controlling *V. parahaemolyticus* growth and this tool helps oyster companies design and monitor supply chains to maximise both oyster safety and quality. The Oyster Refrigeration Index can be especially useful for companies that have long supply chains and those exporting to countries that have maximum *V. parahaemolyticus* and TVC limits.

The model predictions were field-tested with Pacific oysters which contained natural populations of *V. parahaemolyticus*. The tests demonstrated that the model provided "fail-safe" predictions for *V. parahaemolyticus* growth in Pacific oysters over a temperature range of 4 to 30°C.

After registering, you can access both a web-based and Excel® downloadable version of the V. parahaemolyticus and TVC models.

We hope you find this tool useful. If you have technical questions or wish to provide us with feedback, please see the "Contact us" link below.

- Login
- New user? <u>Register to use the predictor</u>
- <u>Documents and Downloads</u> (User Guide and Excel® versions)
- <u>Contact Us</u>
- Acknowledgments
- Funding sponsors
- <u>Disclaimer</u>

http://vibrio.foodsafetycentre.com.au/

Sensitivity Analysis of Oyster Supply Chains

from Madigan 2008

Sensitivity Analysis of Oyster Supply Chains

from Madigan 2008

Refrigeration vs Spoilage Cost Scenarios

	Possibilities of exceeding 7.9				
Temperature	log CFU/g	Cold st	orage cost	Co	st of loss of product
4 C	7.0%	\$	166,445.97	\$	1,234,975.35
6 C	9.4%	\$	158,687.03	\$	1,658,395.47
8 C	12.3%	\$	150,931.67	\$	2,170,028.12
10 C	16.4%	\$	143,181.63	\$	2,893,370.82
12 C	22.0%	\$	135,445.05	\$	3,881,351.10

~\$23,000 ~\$1.6 million

Refrigeration vs Spoilage Cost Scenarios

	Possibilities of exceeding 7.9					
Temperature	log CFU/g	Cold storage cost		Cost of loss of product		
4 C	7.0%	\$	166,445.97	\$	1,234,975.35	
6 C	9.4%	\$	158,687.03	\$	1,658,395.47	
8 C	12.3%	\$	150,931.67	\$	2,170,028.12	
10 C	16.4%	\$	143,181.63	\$	2,893,370.82	
12 C	22.0%	\$	135,445.05	\$	3,881,351.10	

Temperature, °C

Integrating Sensors and Predictive Models

Log Vp/g=-2.05+ 0.097*temp_{water}+0.2*sal-0.0055*SAL²

Vgrowth rate = 0.0303 x (temp-13.37)

Currently, predictive models are not commonly used in real-time (or even retrospectively), due to lack of data capture.

Sensors are a solution.

Integration of Time Temperature Indicator (TTI) sensors with predictive models for consumer-direct delivery of food products

Case study #2: Pathogenic *E. coli* in beef

Boxed trim destined for export

Problem: What innovations can help export companies more quickly reach their markets?

Refrigeration Index (RI)

- Previous regulation required carcases to be cooled to 7°C in < 24 hours
 - this could be done in many ways with quite different food safety outcomes
- The industry wanted to package hot-boned beef trim
- A predictive model was developed through a government-industryuniversity partnership
- The Refrigeration Index predicts potential growth of *E. coli* based on a growth model

RI now part of Australian food safety law for meat

Export Control (Meat and Meat Products) Orders 2005

Refrigeration Index Calculato	r _ D >
Welcome to the Refrigeration	Index Calculator
A 13 23.7 14 22.3 15 20.9 16 19.8 17 18.8 18 17.7 19 16.7 20 15.6 21 15.4 22 13.5 23 12.8 24 11.7 25 10.6 26 9.9 27 8.6 28 8 29 6.9 30 6.2 31 5.4 32 4.6	Select the product type: Carcase Boxed Trim Primal where the slowest cooling point is lean Primal where the slowest cooling point is fat OR a mixture OR you're not sure Offal Recovered meat products The starting temperature is hot (as for initial cooling of a carcase): Yes No Specify other parameters and information: Temperature measurement interval: 15 min Date of data collection: Description of product, processing conditions, etc.:
	Previous Next Close

Welcome to the

Refrigeration Index Calculator

81

_ 🗆 ×

Benefits

Analysis by Australian Centre for International Economics

- \$160 million increase in Australia's GDP
- \$280 million in social benefits

Case study #3: Clostridium perfringens in cooked primals

Problem: How can companies better manage temperature deviations when cooling primals?

Perfringens Predictor

- Previous regulation about cooling cooked primals was highly prescriptive
- Occasionally, cooling profiles deviated
- Sampling plans and testing were not cost-effective
- An outcome-based model was developed through a government-industry partnership
- Accepted criteria was <1 log growth of *C. perfringens*

Perfringens Predictor

₽

Perfringens Predictor

ComBase (www.combase.cc)

ComBase

Access ComBase

The ComBase Browser enables you to search thousands of microbial growth and survival curves that have been collated in research establishments and from publications.

The ComBase Predictive Models are a collection of software tools based on ComBase data to predict the growth or inactivation of microorganisms

Login/Register

A database of microbial behaviour in food environments

http://www.combase.cc

Vision: ComBase data and models will be used to support global food safety and quality programs.

Goal: To engage with the international food microbiology community, and provide it with robust data and models that describe how food safety and spoilage organisms respond to food environments.

ComBase Partners and Associates

ComBase Advisory Group

- Unilever
- Nestlé
- IZLER
- USFDA
- USDA
- Rutgers University

The ComBase Scientific Group is being formed, and we are looking for more interested partners.

= ComBase			
Q Browser	Search	Responses Sources	
ComBase Predictor	Organism	Salmonella spp × Bacillus cereus × Clostridium botulinum (non-prot.) ×	
Predictive Models >	Matrix	Other or unknown type of dairy ×	
🕫 Resources 🛛 🔸	Conditions	Lactic acid (possibly as salt) in the environment 🕺	
? Help →	Properties	Culture of mixed species produced the response. X [Any All] X [Any All]	
	Temperature	× 0.0 10.0 ×	
	Aw/NaCl	0.73 0.92 ×	
	рН	A.0 Imbode where unspecified 75	
Author		Yype or click here	
	H-Add another field		
	Environmental conditions Any Static Dynamic	Proprietary data Public Records Private Records	

Choma (et al.), 2000: Effect of temperature on growth characteristics of Bacillus cereus TZ415

Source

Bacillus cereus in broth	ID: <i>GMW_1055</i>	Max.rate(logc.conc/h) Fit data							t Data	
latrix emperature (°C)	Culture medium			Prediction	Fit					
w NaCl	0.997 (assumed)		10						10	logcCFU/g
ource Choma (et al.), 2000: Effect of temperatu	re on growth characteristics of Bacillus cereu:	s TZ415	8							
nditions			6						٥	
operties			g/n,					•		
rther specifications Strain(s): T2415			P logcci			•	٥			
tails No details specified					0					
easurement by colony counts.			20	4						

Back to results

Export to csv Previous Next Max.rate(logc.conc/h) Fit data Bacillus cereus in broth ID: GMW_1055 Chart Data Matrix Culture medium Prediction Fit Temperature (°C) 10 10 0.997 (assumed) logcCFU/g Aw | NaCl pH 7 Source Choma (et al.), 2000: Effect of temperature on growth characteristics of Bacillus cereus TZ415 0 Conditions Properties logcCFU/g Further specifications Strain(s): T2415 Details No details specified Measurement by colony counts. 20 40 60 100 120 140 0 80 Time (h) Baranyi and Roberts Model (no lag) [fit] × 0.971 R-square: SE of Fit: 0.287 Initial value 2.194 ± 0.232 Max. Rate 0.0378 ± 0.00402 Final Value 6.7 ± 0.302

ComBase Predictor

ComBase Predictor

Applications

- Growth/thermal and non-thermal inactivation
- Shelf-life
- Hazard identification
- Product development
- Process deviations

Collaborative opportunities

- Predictive microbiology training
- Research collaborations
- ComBase workshops
- Scientist-Student exchange/degrees

Food Safety and Standards Authority of Indía

Thank you for your generous hospitality!

