

Microbiological Sampling and Testing in Food Safety Management

Delivered By:
Marcel Zwietering , PROFESSOR IN FOOD
MICROBIOLOGY, WAGENINGEN UNIVERSITY,
THE NETHERLANDS

Sampling plan: example

Food category: powdered infant formulae (PIF)

Safety Criteria:

Microorganism	Sampling plan		Sample weight (g)	Analytical method
	n	С		
Cronobacter spp.	30	0	10	ISO/TS 22964
Salmonella	60	0	25	ISO 6579

CODEX Code of hygienic practice for powdered formulae for infants and young children CAC/RCP 66-2008

Sampling plan: example

Food category: powdered infant formulae (PIF) Hygiene Criteria:

Micro-organism	Sampling plan		m	М	Analytical method	
	n	С				
Mesophiles	5	2	500/g	5000/g	ISO 4833	
Enterobacteriaceae	10	2	0/10 g	-	ISO 21528- 1/21528-2	

CODEX Code of hygienic practice for powdered formulae for infants and young children CAC/RCP 66-2008

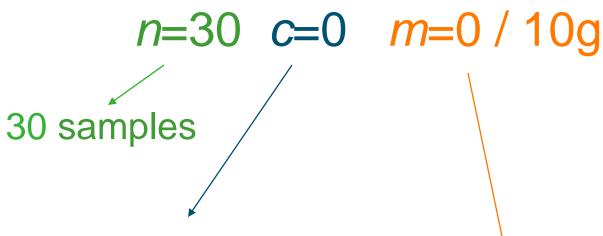
The anatomy of a sampling plan

Qualitative and Quantitative plans

2 class and 3 class plans

$$c=0$$
 or $c\neq 0$

Class	Qual/Quant	c=0 ?
2	Qual	0
2	Qual	#
2	Quan	0
2	Quan	#
3	Quan	#



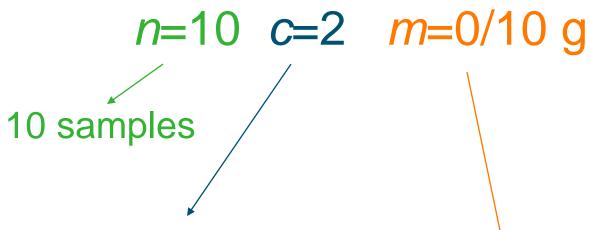
The anatomy of a sampling plan

Microorganism	Sampling plan		Sample weight (g)	Analytical method
	n	С		
Cronobacter spp.	30	0	10	ISO/TS 22964
Salmonella	60	0	25	ISO 6579

Cronobacter PIF (2-class, qualitative)

None of 30 samples is allowed to show an analytical result exceeding the microbiological limit

Microbiological limit (defective at 1 cfu/10 g or more)



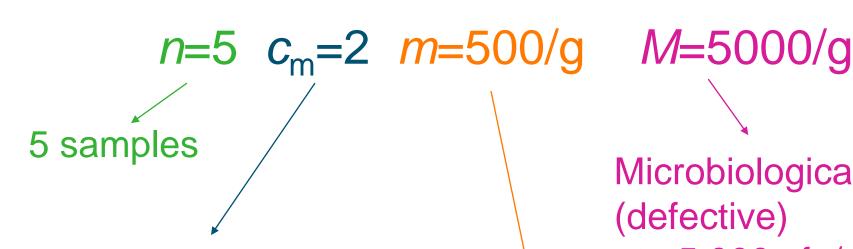
Sampling plan: example

Micro-organism	Sampling plan		m	М	Analytical method	
	n	С				
Mesophiles	5	2	500/g	5000/g	ISO 4833	
Enterobacteriaceae	10	2	0/10 g	-	ISO 21528- 1/21528-2	

Enterobacteriaceae PIF (2-class, qualitative)

Two of 10 samples are allowed to show an analytical result exceeding the microbiological limit

Microbiological limit (defective sample at 1 cfu/10 g or more)



Sampling plan: example

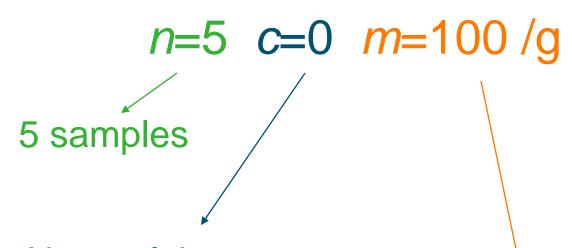
Micro-organism	Sampling plan		m	М	Analytical method	
	n	С				
Mesophiles	5	2	500/g	5000/g	ISO 4833	
Enterobacteriaceae	10	2	0/10 g	-	ISO 21528- 1/21528-2	

Mesophiles – PIF (3-class, quantitative)

Microbiological limit (defective) at >5,000 cfu/g

Two of 5 samples are allowed to show an analytical result exceeding the microbiological limit m but not M

Microbiological limit (marginal defective) at >500 cfu/g


Sampling plan:

Ready-to-eat (no growth) foods from the end of manufacture or port of entry (for imported products), to the point of sale

Micro-organism		pling an	m	М	Analytical method
	n	С			
Listeria monocytogenes	5	0	100 cfu/g	-	ISO 11290-2

Listeria – no growth (2-class, quantitative)

None of the 5 samples are allowed to show an analytical result exceeding the microbiological limit *m*

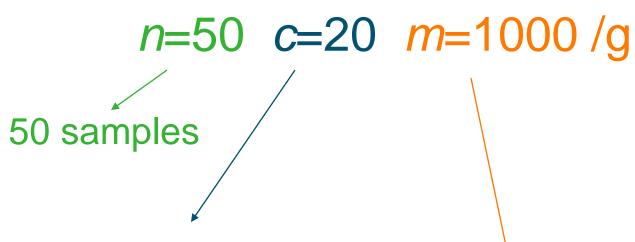
Microbiological limit (defective) at >100 cfu/g

ANNEX

Annex I to Regulation (EC) No 2073/2005 is amended as follows:

- in Chapter 2, Section 2.1 is amended as follows:
 - (a) the table is amended as follows:
 - (ii) the following row 2.1.9 is added:

Food	Micro-	Sam	pling plan	Lin	nits	Analytical	Stage	Action in case
category	organisms	n c	с	m	M	reference method	where the criterion applies	of unsatisfactory results
"2.1.9 Carcases of broilers	Campylobacter spp.	50 (⁵)	c=20 From 1.1.2020 c=15; From 1.1.2025 c=10	100 cfu		EN ISO 10272-2	Carcases after chilling	Improvements in slaughter hygiene, review of process controls, of animals origin and of the biosecurity measures in the farms of origin


Sampling plan:

Hygiene criterion Campylobacter broilers

Micro-organism		pling an	m	M	Analytical method
	n	С			
Campylobacter spp.	50	20	1000 cfu/g	_	ISO 10272-2

Campylobacter-broilers (2-class, quantitative)

20 of the 50 samples are allowed to show an analytical result exceeding the microbiological limit *m*

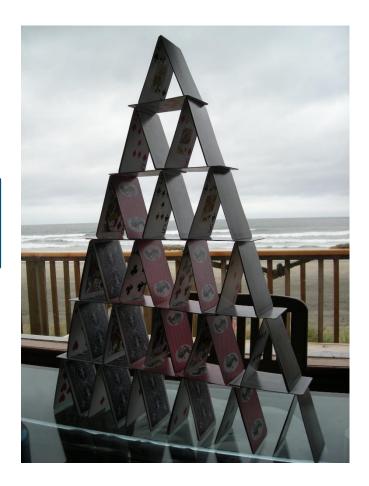
Microbiological limit (defective) at >1000 cfu/g

The anatomy of a sampling plan

Class	Qual/Quant	c=0 ?	Example
2	Qual	0	Salmonella in PIF
2	Qual	#	Enterobacteriaceae in PIF
2	Quan	0	Listeria in no growth RTE
2	Quan	#	Campylobacter in broilers
3	Quan	#	Mesophiles in PIF

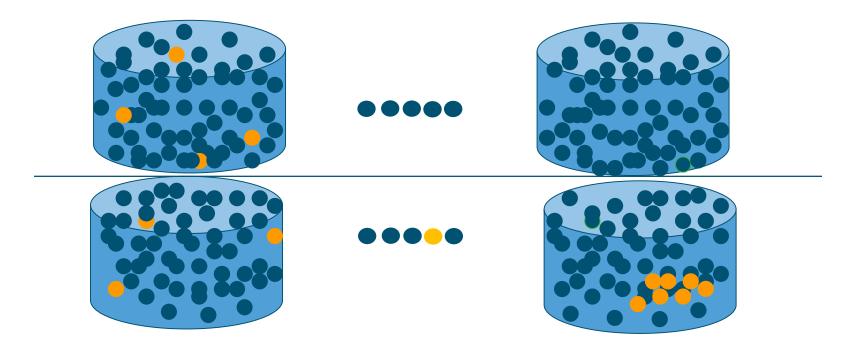
Verification by MicroCrit

Monitor Critical Limits


Validated CCPs

HACCP

PRP (GMP, GHP,)



verification by MicroCrit

End product testing useful or lottery?

Positives mean something, negatives are no guarantee

MISCONCEPTION 1

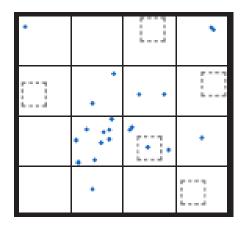
If the tested sample units are negative, the batch is free of the pathogen.

Statistical Aspects of Food Safety Sampling

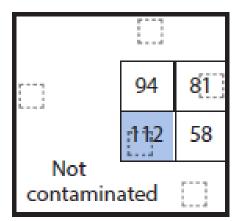
I. Jongenburger, H.M.W. den Besten, and M.H. Zwietering

Annu. Rev. Food Sci. Technol. 2015. 6:479-503

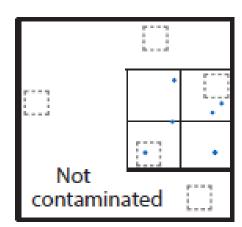
a


Homogeneous contamination

-		
_		

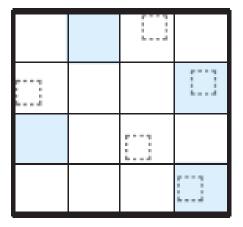

22	113	94	49
8	10	93	105
520	59	:81	17
19	101	36	33

Heterogeneous high-level contaminati



Heterogeneous low-level contamination

e

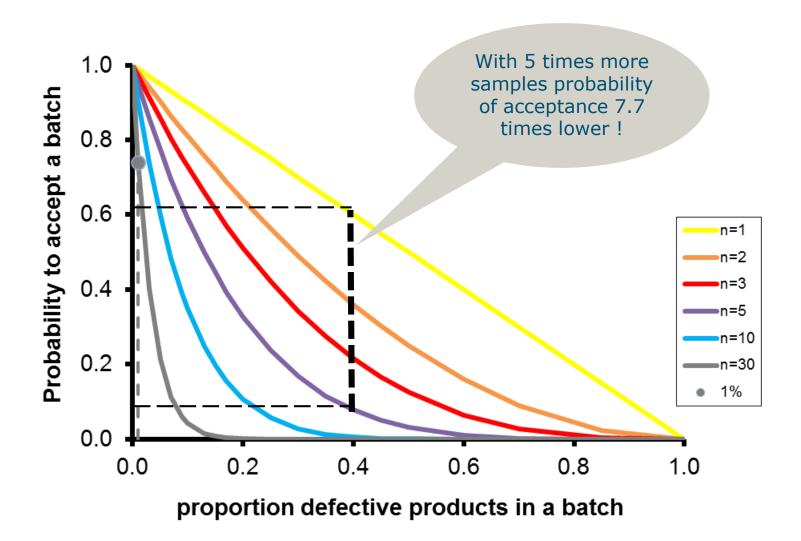


Localized high-level contamination

Localized low-level contamination

Homogeneous contamination

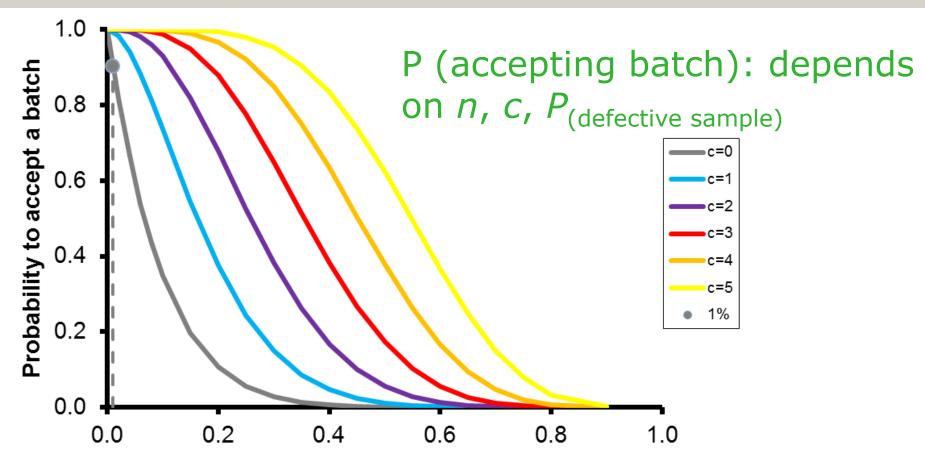
Probability that no contamination is found


P _{defective}	n=1	
	1- P _{def} =	
0.00	1.00	
0.01	0.99	
0.05	0.95	
0.10	0.90	
0.15	0.85	
0.20	0.80	
0.25	0.75	
0.30	0.70	

1 % defectives of 100,000 products, means 1,000 products

$$P_{accept} = (1 - P_{defective})^n$$

Probability of accepting a lot, c=0



MISCONCEPTION 2

Using a realistic sampling scheme, it is possible to test for absence of a pathogen in a batch of food.

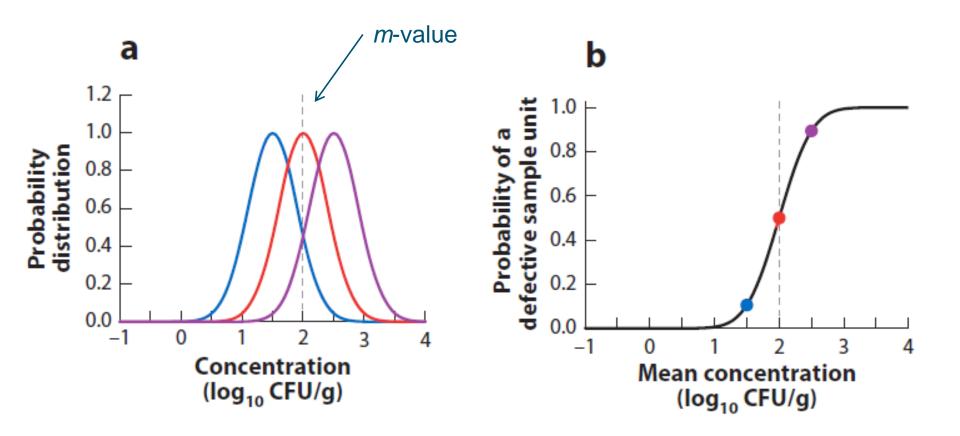
MISCONCEPTION 3

Current sampling plans assume that microorganisms follow the binomial distribution.

proportion defective products in a batch

If $c \neq 0$ $P_{accept} = binomial(k \leq c, n, P_{defective})$

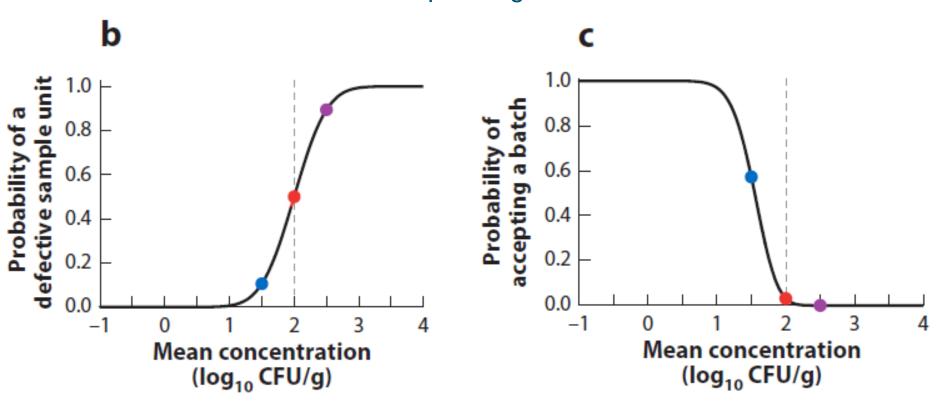
b

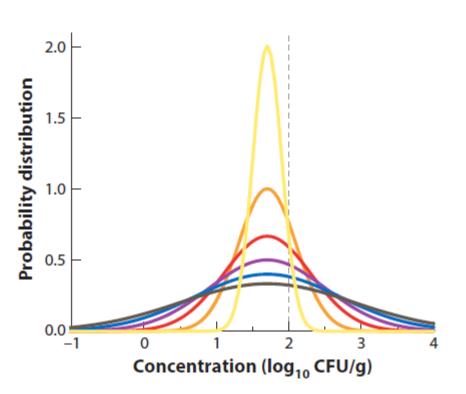

22	113	94	49
8	10	93	105
520	59	:81	17
19	101	36	[]33

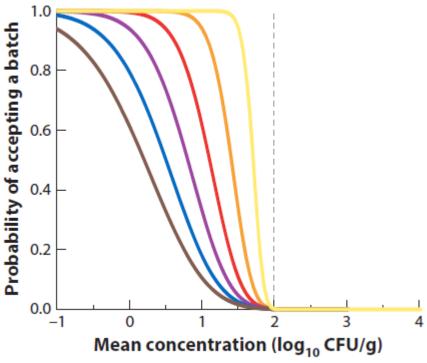
Heterogeneous high-level contamination

MISCONCEPTION 4

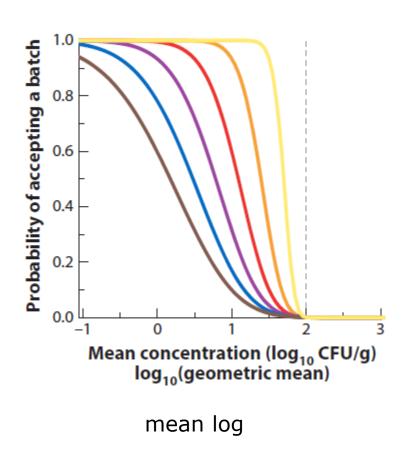
Current sampling plans assume that microorganisms are homogeneously distributed in a batch.

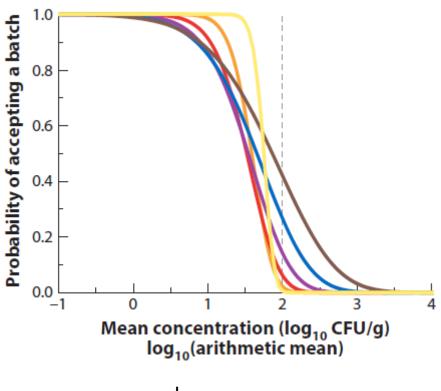



$$\begin{split} P_{defective} &= P_{normal}(\log_{10} C > m, \mu_{\log C}, \sigma_{\log C}) \\ &= 1 - P_{normal}(\log_{10} C \le m, \mu_{\log C}, \sigma_{\log C}), \end{split}$$

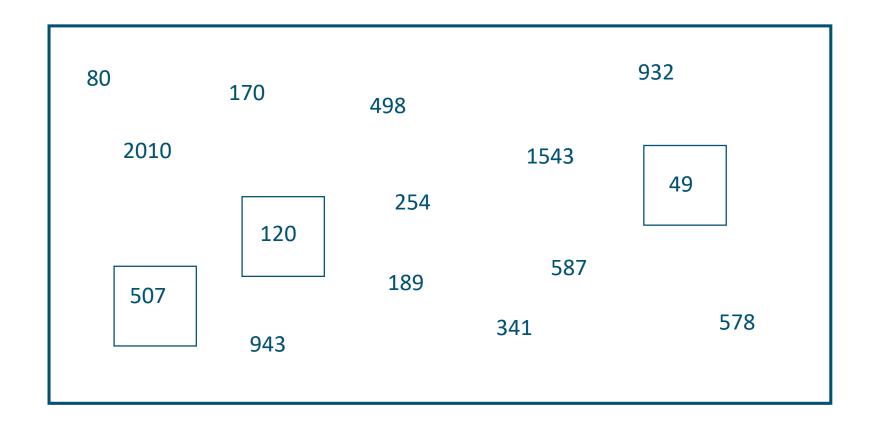

OC curve: Operating Characteristic

$$P_{accept}(c, n, P_{defective}) = binomial(k \le c, n = n, P = P_{defective})$$
 $n=5$


n=10; $\sigma=1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.

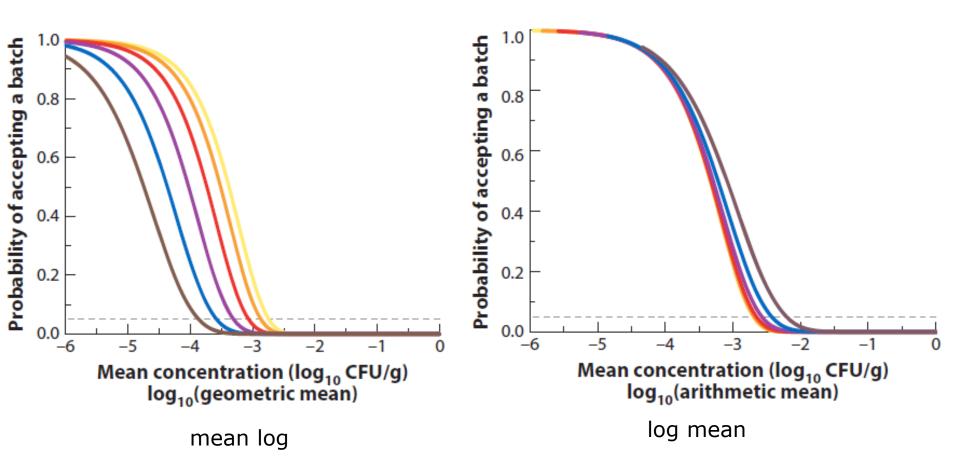


n=10; $\sigma=1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.




$$\log_{10}(\bar{C}) = \overline{\log_{10} C} + 0.5 \cdot \ln 10 \cdot \sigma_{\log_{10} C}^{2}$$

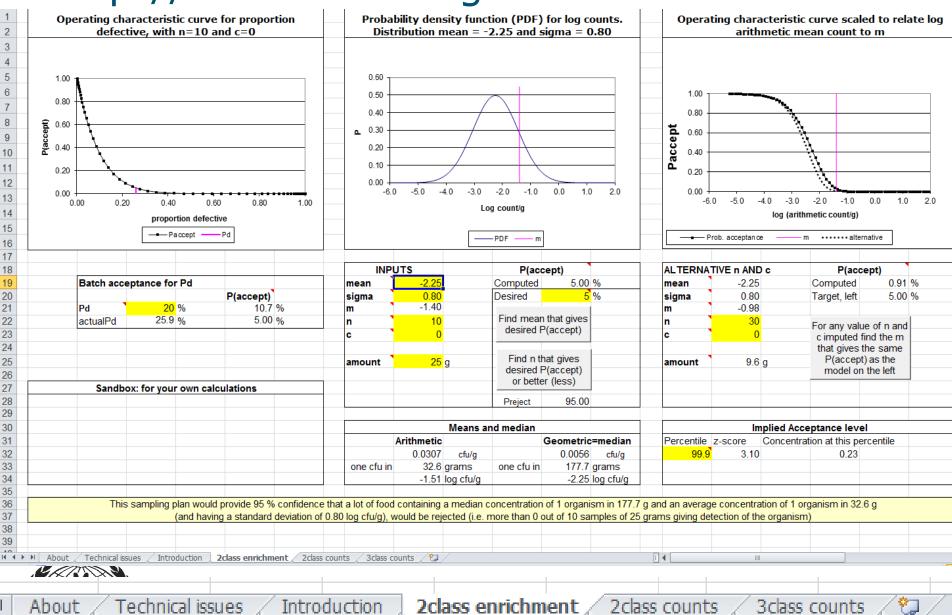
Distribution counts



Distribution enrichment

n=60; $\sigma=1.2$ (brown), 1.0 (blue), 0.8 (purple), 0.6 (red), 0.4 (orange), and 0.2 (yellow) \log_{10} CFU/g.

Three statistical phenomena are relevant:


- 1. the actual spatial distribution of microorganism in the food batch,
- 2. the statistical process of taking a sample unit and it being defective
- 3. the acceptance of the lot based on n sample units, of which c are accepted to be positive and $P_{defective}$

For example

- 1. organism lognormally distributed in product
- 2. taking one sample is a Poisson process
 - $P_{\rm defective}$ is a Poisson-lognormal distribution of contaminant in the sample unit
- 3. P_{accept} of a lot based on $P_{defective}$, n sample units, and c is a binomial process
 - P_{accept} is then a Binomial(Poisson(LogNormal)) distribution!

http://www.icmsf.org

5

Conclusions

 All samples negative is no quarantee of safety

- A positive sample is indicating unsafety
- Sampling is useful for verification
- As function of the arithmetic mean the effect of the spread is limited
- Tools exist!

Control of safety is only to a very limited extend supported by end-product testing